CSE decid „nivel de bază matematică
baza piramidei este un dreptunghi, o față laterală perpendiculară pe planul de bază, iar celelalte trei fețe laterale sunt înclinate față de planul de bază 60 la un unghi. Înălțimea piramidei este 6. Găsiți volumul piramidei.
Deoarece fețele laterale și înclinată spre bază. colțuri în unghi într-un triunghi, și unghiul triunghiului sunt
Prin urmare, triunghi - echilateral, și este asociat cu înălțimea laturilor de formula
Din triunghiul din dreapta găsim:
Deoarece - un dreptunghi cu o suprafață egală cu produsul dintre laturile:
Rămâne de a găsi volumul unei piramide:
The-Ville Termenul mare-patrulateră pi-ra-mi-de-SABCD vă cu unul-CO este de 13, dia-de-Nahl OS-no-va-TION BD este 8. Punctele K și M - lo-re-di coaste -ny CD si BC, respectiv. Unghiul Nai-di-te Tan Gens între COSV-to-Stu SMK și SVOC-to-Stu OS-no-va-TION AVS.
Să În ku și cu toate acestea theo-D UI trei benzi-pen-di-ku la rah în unghi, dar ku NE-La este Xia Do-it-său unghi bi-grand-but unghiul dintre -lea COSV-to-E-contractabile și apoi
raza cilindrului de bază este de 13, iar generatoarei este egală cu 18. secțiune transversală paralelă cu axa cilindrului, scos din ea cu o distanță egală cu 12. Găsiți aria acestei secțiuni transversale.
Luați în considerare secțiunea cilindru plan paralel cu baza. Vom introduce notația așa cum se arată în figură. Luați în considerare un triunghi dreptunghic de teorema lui Pitagora:
Triunghiurile și - dreptunghiulare - generale, ambele părți și raze egale a unui cerc, prin urmare, cele două triunghiuri sunt catete unde înseamnă suprafața secțiunii - suprafață a unui dreptunghi cu laturile 18 și 10:
Având în vedere două con. Ra di baza mustăți și o-ra-th zu-schaya primul bine-to-carne sunt co-pe-ud-guvernamentale but-3 și 9 și Auto-ro-lea - 6 și 9. în skol- PLO side Schad la timp în top-but-IFPS al doilea co-bine-sa mai PLO-conductive-di-side pe partea de sus-but-primul sti?
Aria suprafeței laterale a conului: Am găsit PLO-Schad on-top-but-primul con sti:
Găsiți ASW-Schad on-top-but-STi al doilea con:
Găsește pe-no-ea- conuri ale spațiului:
Volumul de co-bine-sa este de 135. Prin punctul,-de la-conductoare-vă cu bine-la-sa în by-no-a-NII 1: 2,-schi-lea din partea de sus, pro-ve-de -la planul de bază pa-Ral-alela-evaluate. Volumul Nai-di-te unui con-by se-ka-e-mo-lea Dan-no-a doua la-sa bine conected avionul.
Raportul dintre Ob-e-mov-to-well, bufnite egal cu cubul co-ef-fi chi-en-ta asemănării lor. Punctul împarte înălțimea în raport de 1: 2, deci cu tine-la-bine-bufnițe din-but-FNF-Xia ca 1: 3, în această lor Ob-lea-lea-ne-de-dar syat- Xia cum ar fi 01:27. În consecință, volumul-se-e-ka-mo-th-carne este bine-135 3 martie = 5.
OS-no-va-SRI direct meu premiu, mințim Triunghiul direct-mo-cărbune-TION, unul dintre-ka te-ing la-the-ro-lea este un Gl-of-the-bine, a egal Valoarea Nai-di-te de prismă, în cazul în care ei te-cu-care este
Auto găsi un picior roi de triunghi:
Găsiți valoarea premiului, avem următoarea formulă:
O sută de-ro-HN oc-but-va-TION PRA-vil-termen-gât-STI coaste cu cărbune clorhidric pi-ra-E-dy egal cu 14, mai-la-tiile sunt 25. Nai-di-te Plo Schad bo-ko-ing on-top-dar-STi piramidei.
Am găsit piramida apo-fe-lea:
Găsiți Schad PLO-side în piramida de sus, dar stimul:
Volumul co-SA este bine si sa te-cu-care este. Nai-di-te ra-di-os os-but-all-a conului.
Găsim ra-di-YC de carne de bază la bine prin formula:
Valoarea Nai-di-te de piramidă pătrat-Ville termen mare, unu la sută ro-OS-nu-va-TION la un roi este de 6, și-bo la margine încă urlând.
Să considerăm un pătrat la baza, se va efectua construcția așa cum se arată în Fig. Deoarece - diagonala de pătrat, diagonala unui pătrat divizat punctul de intersecție în jumătate, astfel încât să ia în considerare triunghiul - este dreptunghiular, teorema lui Pitagora:
Volumul piramidei este înălțimea piramidei zona a treia lucrare la baza: